Home    Research    Publications    Seminars    Software    CV


Number \(a_n(FS_r)\) of index n subsemigroups of the free semigroup of rank r

The following values were computed using this C++ code. For a summary of the orbit data for each support size and the subsequent polynomials see here.

r \ n123456789
1 124712233967118
2 2116238225621841314096811420049745298
3 327250256828746347691449598361714968894242997
4 450644920914341624150784353283283373441616863679508
5 580132024150480736103408002381203655826981430150609007570
6 611723545243712697383319244292855812227600653310866466783828
7 7161382210031728598788793535128920461651010315257143726895105059
8 821258001752385746592203079088767201236030775524080113032655134280
9 92708364285849105968524230199291804271431581682505001039027404931886
10 103351159044200018274722813079415386325331801947580054285103592924112830
11 1140715554654742298669141465238951767293765154261622698733249671899238553
12 12486203329363274670834425045704541432916074328692072992879556011110821900
13 13572260001300208704076884096363050254187917217167180946418591159218973374618
14 146653263417610391028729386453945820431689558638305958759880692285577690060224
15 157654031023346751463369589847206595706238357145536553963769654295541793230055
16 16872491043038172203383040146118068001118513917168906754962748867744391551417168
17 1798659092388978727697046021159092347172182344071914834959718094913463091632241446
18 18110770350490897837046003429986700577258483757550423585568508924222664032519139786
19 19123582954611640448763967441689863251379469570975136554507897171837077004487877597
20 20137096980753392563274994456973405590546050413096055376545346637059121471456422020

\begin{align} a_n(FS_1)&=\href{https://oeis.org/A007323}{A007323}(n) \\[1em] a_1(FS_r)&=r \\[1em] a_2(FS_r)&=\frac{7}{2}r^2-\frac{3}{2}r \\[1em] a_3(FS_r)&=\frac{38}{3}r^3-\frac{11}r^2+\frac{7}{3}r \\[1em] a_4(FS_r)&=\frac{1201}{24}r^4-\frac{239}{4}r^3+\frac{311}{24}r^2+\frac{15}{4}r \\[1em] a_5(FS_r)&=\frac{6389}{30}r^5-\frac{613}{2}r^4+\frac{185}{6}r^3+\frac{255}{2}r^2-\frac{264}{5} \\[1em] a_6(FS_r)&=\frac{696049}{720}r^6-\frac{72727}{48}r^5-\frac{58627}{144}r^4+\frac{33101}{16}r^3-\frac{509257}{360}r^2+\frac{973}{3} \\[1em] a_7(FS_r)&=\frac{11708603}{2520}r^7-\frac{87143}{12}r^6-\frac{146903}{18}r^5+\frac{54431}{2}r^4-\frac{9126049}{360}r^3+\frac{129725}{12}r^2-\frac{13019}{7}r \\[1em] a_8(FS_r)&=\frac{947714177}{40320}r^8-\frac{5336487}{160}r^7-\frac{55786441}{576}r^6+\frac{7419257}{24}r^5-\frac{2105526961}{5760}r^4+\frac{110385341}{480}r^3-\frac{52875299}{672}r^2+\frac{95103}{8}r \\[1em] a_9(FS_r)&=\frac{5649947729}{45360}r^9-\frac{78967849}{560}r^8-\frac{1039050691}{1080}r^7+\frac{142822454}{45}r^6-\frac{9770306269}{2160}r^5+\frac{2708660903}{720}r^4-\frac{44177206909}{22680}r^3+\frac{378138079}{630}r^2-\frac{776555}{9}r \end{align}


Number \(a^I_n(FS_r)\) of index n ideals of the free semigroup of rank r

The following values were computed using this C++ code. For a summary of the orbit data for each support size and the subsequent polynomials see here.

r \ n123456789101112
1 111111111111
2 236102035681262424588861696
3 3616369623762416084221110432910976768
4 41032892848662776886028744934643056081000982
5 51555180656233086203202012090045966017612306779350
6 621863211302521221582901323826021639917709667430926564
7 728126525233110297467962150121003877474000822622985108914792
8 8361768063872186009152045584923061521180848461161312319883860
9 9452371179607531395165591884592479684826337348146326572821478540
10 1055310166091125024528192016021759236660539215313185689401902539090
11 1166396226613178770334570282745633167209681031048596433998134059329428
12 127849630151849211399471162444961632877689218644255412222851768102047571
13 13916113926252981637481071226708818547477573321812751220674923315299530558
14 1410574250193386622933415668261081945975575332534012038381629486027571346453
15 15120890631544493314245223560016062315116655430856672638636081499547737864765
16 16136105678365750442246431216642327605417531222413345415521026824060879840419428
17 171531241960573253558501427687733020579257349587202616477116118246499129545331183
18 1817114461164692124727431576169245971316370007534300702254424682915962204647344752
19 19190167213984114532934933764605662935486522217071437316465936975349437315689966676
20 2021019201664514092411873301001036084869790724885360624539775654307290760476722268320

\begin{align*} a^I_n(FS_1)&=1 \\[1em] a^I_n(FS_2)& \sim \href{http://oeis.org/A001405}{A001405}(n+1) ? \\[1em] a^I_1(FS_r)&=r \\[1em] a^I_2(FS_r)&=\frac{1}{2}r^2+\frac{1}{2}r \\[1em] a^I_3(FS_r)&=\frac{1}{6}r^3+\frac{3}{2}r^2-\frac{2}{3}r \\[1em] a^I_4(FS_r)&=\frac{1}{24}r^4+\frac{5}{4}r^3-\frac{1}{24}r^2-\frac{1}{4}r \\[1em] a^I_5(FS_r)&=\frac{1}{120}r^5+\frac{7}{12}r^4+\frac{67}{24}r^3-\frac{43}{12}r^2+\frac{6}{5}r \\[1em] a^I_6(FS_r)&=\frac{1}{720}r^6+\frac{3}{16}r^5+\frac{461}{144}r^4-\frac{73}{48}r^3-\frac{1513}{360}r^2+\frac{10}{3}r \\[1em] a^I_7(FS_r)&=\frac{1}{5040}r^7+\frac{11}{240}r^6+\frac{263}{144}r^5+\frac{115}{16}r^4-\frac{8089}{360}r^3+\frac{319}{15}r^2-\frac{48}{7}r \\[1em] a^I_8(FS_r)&=\frac{1}{40320}r^8+\frac{13}{1440}r^7+\frac{1979}{2880}r^6+\frac{173}{18}r^5-\frac{66113}{5760}r^4-\frac{43913}{1440}r^3+\frac{227777}{3360}r^2-\frac{281}{8}r \\[1em] a^I_9(FS_r)&=\frac{1}{362880}r^9+\frac{1}{672}r^8+\frac{1657}{8640}r^7+\frac{547}{90}r^6+\frac{377749}{17280}r^5-\frac{37105}{288}r^4+\frac{18446699}{90720}r^3-\frac{294191}{2520}r^2+\frac{136}{9}r \\[1em] a^I_{10}(FS_r)&=\frac{1}{3628800}r^{10}+\frac{17}{80640}r^9+\frac{5129}{120960}r^8+\frac{14423}{5760}r^7+\frac{5648053}{172800}r^6-\frac{789689}{11520}r^5-\frac{20055283}{90720}r^4+\frac{18449327}{20160}r^3-\frac{28177631}{25200}r^2+\frac{2292}{5}r \\[1em] a^I_{11}(FS_r)&=\frac{1}{39916800}r^{11}+\frac{19}{725760}r^{10}+\frac{937}{120960}r^9+\frac{91897}{120960}r^8+\frac{3771383}{172800}r^7+\frac{2583703}{34560}r^6-\frac{133247833}{181440}r^5+\frac{289546877}{181440}r^4-\frac{5427659}{6300}r^3-\frac{1158377}{1260}r^2+\frac{9054}{11}r \\[1em] a^I_{12}(FS_r)&=\frac{1}{479001600}r^{12}+\frac{1}{345600}r^{11}+\frac{10487}{8709120}r^{10}+\frac{17567}{96768}r^9+\frac{137379751}{14515200}r^8+\frac{1567309}{12800}r^7-\frac{664752743}{1741824}r^6-\frac{22482445}{13824}r^5+\frac{108858294689}{10886400}r^4-\frac{11855920577}{604800}r^3+\frac{5629166951}{332640}r^2-\frac{21769}{4}r \end{align*}


Number \(a^C_n(FS_r)\) of n-class congruences on the free semigroup of rank r

The following table was computed using the \(T(n,k)\) values below and this GAP code.

r \ n1234567
1 1234567
2 1104014945713803940
3 12622716961038164954367829
4 15894012053124683131277432656398
5 1122338368524108995717321988780465754
6 125011320344609796240717954239812045020929
7 1506363471609696520538811600876052147519031977
8 110181138607172573316326523129117789021565476753784
9 120423512633097224418281732779709576831615081546028136
10 14090107320013089656910196063247694127660206135628506406503
11 1818632584675449330965541241328147794971522601159259144898895
12 11637898531802244421493295432808963319884352659909533744204879710
13 132762297151439173051164155259094099720946918867220476099049497779198
14 165530894566803728089652980705278048871348524331804574593323024246963037
15 11310662689925871508948548964160059545588185660317349086284540142135847262133
16 12621388082229006089036128132130479300850035383680423062123834221197250091626276
17 1524282242715902324516078052841085579112867117335491118566317852254797914798557657140
18 1104857072864577609854452832489550973290773532620763745352674267021878179549788810530931
19 120971462186933470739561959263096278774534731256811277971416898461635613730528967947333170491
20 14194298656279270201586804470505331407067439458986437830299841407152784699692765346386868067082

\begin{align*} a^C_n(FS_1)&=n &\text{where:}\qquad{r \brace k}&=\href{http://oeis.org/A008277}{A008277}(r,k)&& \\[1em] a^C_1(FS_r)&={r \brace 1}T(1,1) &s(n,k)&=\href{http://oeis.org/A008275}{A008275}(n,k)&& \\[1em] &=-s(2,1)\cdot 1 &\text{and}\qquad T(n,k)&=\text{ [ see below ]}&& \\[1em] &=1 \\[1em] a^C_2(FS_r)&={r \brace 1}T(2,1)+{r \brace 2}T(2,2) \\[1em] &=-s(3,1)\cdot a^C_2(FS_{r-2})-s(3,2)\cdot a^C_2(FS_{r-1}) \\[1em] &=4\cdot 2^r-6=\href{http://oeis.org/A131130}{A131130}(r) \\[1em] a^C_3(FS_r)&={r \brace 1}T(3,1)+{r \brace 2}T(3,2)+{r \brace 3}T(3,3) \\[1em] &=-s(4,1)\cdot a^C_3(FS_{r-3})-s(4,2)\cdot a^C_3(FS_{r-2})-s(4,3)\cdot a^C_3(FS_{r-1}) \\[1em] &= \frac{113}{6}\cdot 3^r-38\cdot 2^r+\frac{45}{2} \\[1em] a^C_4(FS_r)&={r \brace 1}T(4,1)+{r \brace 2}T(4,2)+{r \brace 3}T(4,3)+{r \brace 4}T(4,4) \\[1em] &=-s(5,1)\cdot a^C_4(FS_{r-4})-s(5,2)\cdot a^C_4(FS_{r-3})-s(5,3)\cdot a^C_4(FS_{r-2})-s(5,4)\cdot a^C_4(FS_{r-1}) \\[1em] &=\frac{291}{2}\cdot 4^r-\frac{745}{2}\cdot 3^r+317\cdot 2^r-\frac{189}{2} \\[1em] a^C_5(FS_r)&={r \brace 1}T(5,1)+{r \brace 2}T(5,2)+{r \brace 3}T(5,3)+{r \brace 4}T(5,4)+{r \brace 5}T(5,5) \\[1em] &=-s(6,1)\cdot a^C_5(FS_{r-5})-s(6,2)\cdot a^C_5(FS_{r-4})-s(6,3)\cdot a^C_5(FS_{r-3})-s(6,4)\cdot a^C_5(FS_{r-2})-s(6,5)\cdot a^C_5(FS_{r-1}) \\[1em] &=\frac{15311}{10}\cdot 5^r-\frac{58169}{12}\cdot 4^r+5582\cdot 3^r-\frac{5493}{2}\cdot 2^r+\frac{2917}{6} \\[1em] a^C_6(FS_r)&={r \brace 1}T(6,1)+{r \brace 2}T(6,2)+{r \brace 3}T(6,3)+{r \brace 4}T(6,4)+{r \brace 5}T(6,5)+{r \brace 6}T(6,6) \\[1em] &=-s(7,1)\cdot a^C_6(FS_{r-6})-s(7,2)\cdot a^C_6(FS_{r-5})-s(7,3)\cdot a^C_6(FS_{r-4})-s(7,4)\cdot a^C_6(FS_{r-3})-s(7,5)\cdot a^C_6(FS_{r-2})-s(7,6)\cdot a^C_6(FS_{r-1}) \\[1em] &=\frac{8530559}{360}\cdot 6^r-\frac{444264}{5}\cdot 5^r+\frac{3069971}{24}\cdot 4^r-\frac{782245}{9}\cdot 3^r+\frac{216245}{8}\cdot 2^r-\frac{43211}{15} \\[1em] a^C_7(FS_r)&={r \brace 1}T(7,1)+{r \brace 2}T(7,2)+{r \brace 3}T(7,3)+{r \brace 4}T(7,4)+{r \brace 5}T(7,5)+{r \brace 6}T(7,6)+{r \brace 7}T(7,7) \\[1em] &=-s(8,1)\cdot a^C_7(FS_{r-7})-s(8,2)\cdot a^C_7(FS_{r-6})-s(8,3)\cdot a^C_7(FS_{r-5})-s(8,4)\cdot a^C_7(FS_{r-4})-s(8,5)\cdot a^C_7(FS_{r-3})-s(8,6)\cdot a^C_7(FS_{r-2})-s(8,7)\cdot a^C_7(FS_{r-1}) \\[1em] &=\frac{161313668}{105}\cdot 7^r-\frac{235545521}{36}\cdot 6^r+\frac{261192269}{24}\cdot 5^r-\frac{210522757}{24}\cdot 4^r+\frac{122535049}{36}\cdot 3^r-\frac{7912154}{15}\cdot 2^r+\frac{458861}{24} \end{align*}


Number \(T(n,k)\) of order n Cayley tables ascendingly generated by k elements

The following values were computed using this GAP code which relies on the \({\sf \href{http://tinyurl.com/jdmitchell/smallsemi/}{Smallsemi}}\) data library.

k \ n1234567
11234567
283714545213743933
31131257902060826356023
434926739493819430492722
51837326398792466578957
6170611183032145644
777430560647

\begin{align*} T(n,1)&=n \\[1em] T(n,n)&=\href{http://oeis.org/A023814}{A023814}(n) \\[1em] \end{align*}