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Growth for groups

Word growth rate counts the number of elements in a group of length at most
n (with respect to a finite symmetric generating set).

Theorem (Gromov ’81)

A finitely generated group has polynomial (word) growth if and only if it is
virtually nilpotent (contains a finite index nilpotent subgroup).

Subgroup growth rate counts the number of index n subgroups of a group.

Theorem (Lubotzky, Mann, Segal ’93)

A finitely generated residually finite group has polynomial (subgroup) growth
if and only if it is virtually solvable of finite rank (contains a finite index
solvable subgroup which is finitely generated).
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Finite index sub(semi)groups

Let G be a group, and H ≤ G a finite index subgroup. Then any of the
following properties are satisfied by H if and only if they are satisfied by G:

finitely generated / presented

residually finite

locally finite

periodic

solvable word problem

automatic

How do we define index for subsemigroups?
For example, Grigorchuck defined finite index subsemigroups as follows: The
subsemigroup T of S has finite (Grigorchuck) index if there exists a finite set
K ⊆ S such that for all s ∈ S, there exists k ∈ K with sk ∈ T . With this
definition we can generalise Gromov’s theorem to cancellative semigroups.
But Grigorchuck index does not preserve even finite generation!
There are many other definitions: syntactic index, Green index, Rees index,
kernel index, translational index, etc.
We will be using Rees index: simply the cardinality of the complement of the
subsemigroup. This does not generalise the group index, but finite Rees
index subsemigroups seem to preserve many properties of their
oversemigroup, in particular, all of the above listed properties.
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Sylvester’s Problem

Sylvester stated and solved the following problem:

Let s1 and s2 be two relatively prime natural numbers. Determine the
largest integer g which can not be written as a linear combination
n1s1 + n2s2 where n1 and n2 are non-negative integers.

(Mathematical Questions with their Solutions, Educational Times vol. 41, 1884)

Answer: s1s2 − s1 − s2.
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Frobenius problem

· · ·

Frobenius proposed a generalisation of Sylvester’s problem:

Frobenius problem / Coin problem

Let s1, . . . sn be natural numbers with gcd(s1, . . . , sn) = 1. Determine (or
bound) the largest integer which can not be written as k1s1 + · · ·+ knsn for
some non-negative integers k1, k2, . . . , kn.

A related question is, how many non-negative integers can not be written as
k1s1 + . . . knsn? (When n = 2, this is (s1 − 1)(s2 − 1)/2).
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Numerical Semigroups

A numerical semigroup S is a subsemigroup of (N,+) with |N \ S| <∞.

Or equivalently, S = 〈s1, . . . , sn〉 for some s1, . . . , sn ∈ N with
gcd(s1, . . . , sn) = 1.

The set G(S) := N \ S is called the set of gaps of S.

The number |G(S)| is called the genus of S (the Rees index of S in N).

The element f (S) := max{s | s ∈ G(S)} is called the Frobenius of S.

The element m(S) := min{s | s ∈ S} is called the multiplicity of S.

A numerical semigroup is called ordinary if f (S) < m(S), i.e. all the gaps are
at the beginning.
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How many numerical semigroups are there of a given genus?

n 1 2 3 4 5 6 7 8 9 10
an 1 2 4 7 12 23 39 67 118 204
an/an−1 2 2 1.75 1.71 1.91 1.69 1.71 1.76 1.72
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Bases for field of symmetric functions

The field of symmetric functions on n variables is the field Kn = Q(e1, . . . , en)
where ei is the i th elementary symmetric polynomial in n variables.

By Newton’s identities, Kn is also given by Q(s1, . . . , sn) where si =
∑n

k=1 x i
k

is the i th power sum.

K1 = Q(s1)

K2 = Q(s1, s2) = Q(s1, s3)

e.g. s2 = (s3
1 + 2s3)/(3s1).

K3 = Q(s1, s2, s3) = Q(s1, s2, s4) = Q(s1, s2, s5) = Q(s1, s3, s5)

e.g. s2 = (s5
1 + 5s2

1s3 − 6s5)/(5(s3
1 − s3)), etc.

an = number of bases for field of symmetric functions on n variables.
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Fibonacci like growth

In 2008 Maria Bras-Amorós conjectured that an has ‘Fibonacci like’ growth.

(Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum 76, 2008).

In 2009 Bras-Amorós gave upper and lower bounds

(Bounds on the number of numerical semigroups of a given genus. J. Pure Appl. Algebra 213, 2009).

In 2010 Yufei Zhao conjectured that most numerical semigroups are of a
certain form

(Constructing numerical semigroups of a given genus. Semigroup Forum 80, 2010).

In 2013 Alex Zhai proved that an ∼ Cφn where φ = 1+
√

5
2 and C is a constant.

(Fibonacci-like growth of numerical semigroups of a given genus. Semigroup Forum 86, 2013).
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Free semigroups of higher rank

Given a finite alphabet Xr := {x1, . . . , xr}, let FSr := X+
r denote the free

semigroup of rank r .

Let a(n, r) denote the number of Rees index n subsemigroups of FSr .

Then a(n, 1) has ‘Fibonacci like’ growth.

Can we determine the rate of growth or find bounds for a(n, r) with r ≥ 2?

Lemma

Every finite (Rees) index subsemigroup of FSr has a finite unique minimal
generating set.

Using the shortlex order, we can define Frobenius, multiplicity, ordinary etc.

We can construct a tree of all finite index subsemigroups of FSr by
considering minimal generators larger than the Frobenius.
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Example for r = 2
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Example for r = 2
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Tree of all finite index subsemigroups of FS2
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Number of index n subsemigroups of FS2

n 1 2 3 4 5 6 7 8
a(n, 2) 2 11 62 382 2562 18413 140968 1142004

a(n,2)
a(n−1,2 5.5 5.64 6.16 6.71 7.19 7.66 8.10
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Ordinary subsemigroups

Levels k to 2k − 1: (r k − i) + r k+1 + r k+2 . . . r 2k−1 = r k
(

rk−1
r−1

)
− i

Level 2k :
i−1∑
j=0

(2(r k − j)− 1) = 2ir k − i2

Level 2k + 1: ri2

Let p(n, r) be the number of minimal generators (= number of descendants)
of the index n ordinary subsemigroup of FSr . Then:

p(n, r) = r k
(

r k − 1
r − 1

)
− i + 2ir k − i2 + ri2

= (r − 1)

(
r k − r
r − 1

+ i
)2

+ (2r − 1)

(
r k − r
r − 1

+ i
)

+ r

= (r − 1)n2 + (2r − 1)n + r
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Lower bound
p(0, 2) = 2

0 p(1, 2) = 6

0 1

0

2
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3
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p(n, r) = (r − 1)n2 + (2r − 1)n + r

L(n, r) =
n∑

i=0

(p(n − i, r)− 1
i

)
≥
(p(n − (n/2), r)− 1

n/2

)
≥
(

p(n/2, r)− 1
n/2

)n/2

=

(
(r − 1)

( n
2

)2
+ (2r − 1) n

2 + (r − 1)

n/2

)n/2

=

(√
(r − 1)

n
2
+ (2r − 1) +

2r − 2
n

)n

This is super exponential for r ≥ 2. (Note that L(n, 1) = Fn).
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Upper bound

We first show:

Lemma

Given an index n subsemigroup S of FSr , the number of minimal generators
of (S ∪ {f}) \ {m} is no less than the number of minimal generators of S.

This gives us:

Corollary

For a fixed index n, the ordinary subsemigroup of FSr has the maximum
number of descendants.

So for an upper bound, assume every index n subsemigroup of FSr has
p(n, r) descendants.
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Upper bound

U(n, r) =
n−1∏
k=0

(
(r − 1)k2 + (2r − 1)k + r

)

=
n−1∏
k=0

(
(r − 1)(k + 1)2 + (k + 1)

)
=

n∏
k=1

(
(r − 1)k2 + k

)
≤

n∏
k=1

(
(r − 1)k2 + (r − 1)k

)
for r ≥ 2

= (r − 1)n
n∏

k=1

(k(k + 1))

= (r − 1)n(n + 1)(n!)2

≤ (r − 1)n(n + 1)

(
e
(

n + 1
e

)n+1
)2

=

(
r − 1
e 2

)n

(n + 1)2n+3

and so(√
(r − 1)

n
2

+ (2r − 1) +
2r − 2

n

)n

≤ a(n, r) ≤
(

r − 1
e 2

)n

(n + 1)2n+3.
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Zeta Functions

Given a sequence a(n), with s(n) =
∑n

i=1 a(n) the sequence of partial sums,

let Za(s) :=
∞∑

n=1

a(n)n−s.

This is called the “Dirichlet series associated to a(n)”.

If a(n) is polynomially bounded then Za(s) converges for Re(s) > α where
α = inf{d ∈ R | ∃c ∈ R>0 s.t. s(n) < cnd for all n}.
The line Re(s) = α is called the abscissa of convergence.

Examples:
1 If a(n) = 1 then Za(s) := ζ(s) the Riemann Zeta function which

converges Re(s) > 1.

2 If a(n) = φ(n), then Za(s) := ζ(s−1)
ζ(s) , which converges Re(s) > 2.

3 If a(n) = φ(n)n−s, then Za(s) := ζ(2s−1)
ζ(2s) , which converges

Re(s) > 2/2 = 1.
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Zeta Functions

Let t(n,2) be the number of 2 generated index n subsemigroups of N, and
s(n,2) =

∑n
k=1 t(k,2).

Given some S = 〈a, b〉 ⊆ N with gcd(a, b) = 1, then b = ja + i for some j ≥ 1
and i ∈ Ua coprime to a, where |Ua| = φ(a).

Then g(a, b) = |G(S)| = (a− 1)(b − 1)/2 is the index or genus of S.
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Upper bound for Zeta function of t(n,2)

For the upper bound, we count correctly but underestimate index:
g(a, aj + 1) ≤ g(a, aj + i)

∞∑
n=1

t(n,2)n
−s =

∞∑
a=2

∞∑
j=1

∑
i∈Ua

g(a, ja + i)−s

≤
∞∑

a=2

∞∑
j=i

φ(a) ((a− 1)(aj + 1− 1)/2)−s

= 2sζ(s)
∞∑

a=2

φ(a)
(

a2 − a
)−s

∼
∞∑

a=2

φ(a)a−2s =
ζ(2s − 1)

ζ(2s)
, which converges for Re(s) = 1.
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Lower bound for Zeta function of t(n,2)

For the lower bound we under count with correct index:

g(〈2, 2n + 1〉) = n  ζ(s), which also converges for Re(s) = 1.

Therefore s(n,2) has ‘linear growth’, that is ∀ε > 0,∃c s.t. s(n,2) < cn1+ε.

Theorem

‘degree d − 1 growth’ ≤ s(n,d) ≤ ‘degree d growth’.
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Computational results

HHHHr
n 1 2 3 4 5 6 7

1 1 2 4 7 12 23 39
2 2 11 62 382 2562 18413 140968
3 3 27 250 2568 28746 347691 4495983
4 4 50 644 9209 143416 2415078 43532832
5 5 80 1320 24150 480736 10340800 238120365
6 6 117 2354 52437 1269738 33192442 928558122
7 7 161 3822 100317 2859878 87935351 2892046165
8 8 212 5800 175238 5746592 203079088 7672012360
9 9 270 8364 285849 10596852 423019929 18042714315

10 10 335 11590 442000 18274722 813079415 38632533180
11 11 407 15554 654742 29866914 1465238951 76729376515
12 12 486 20332 936327 46708344 2504570454 143291607432
13 13 572 26000 1300208 70407688 4096363050 254187917217
14 14 665 32634 1761039 102872938 6453945820 431689558638
15 15 765 40310 2334675 146336958 9847206595 706238357145



Background Numerical Semigroups Higher rank semigroups Bounds Zeta Functions Computational data Ideal growth

Ideal growth

Let Λ be a (Rees) index n (right) ideal of FSr , then it is clear that no gap of Λ
can have a non-gap as a parent. For example, there are 5 (right) ideals of
FS2 of Rees index 2.
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Ideal Growth

Each of these correspond to a rooted binary tree with 3 vertices.

The number of these is precisely the 3rd Catalan number.
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Ideal growth

Let a(n, r) be the number of Rees index n (right/left) ideals of FSr . (These
are the same number as the map FSr → FSr , w 7→ rev(w) is an
anti-isomorphism).

Then a(n, r) is precisely the number of rooted r -ary trees with n + 1 vertices.

a(n + 1, r) = 1
(r−1)n+1

(r n
n

)
.

These are just the ‘Fuss-Catalan’ numbers.
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