Torsion free covering acts

Alex Bailey (joint work with Jim Renshaw)

University of Southampton

Fri 25th May, 2012

Overview \mathcal{X} -cover Module theory result Act theory result Flat cove

Overview of results

Modules over Rings

Given a ring R, an R-module M is called **torsion free** if mr = 0 implies m = 0 or r = 0 for all $m \in M$, $r \in R$.

Theorem (Enochs, 1963)

Every module over an integral domain has a torsion free cover.

Acts over Monoids

Given a monoid S, an S-act A is called **torsion free** if xc = yc implies x = y for all $x, y \in A$, right cancellable $c \in S$.

Theorem (B & R, 2011)

Every act over a cancellative monoid has a torsion free cover.

Overview $\mathcal{X} ext{-cover}$ Module theory result Act theory result Flat covers

What is a cover?

An \mathcal{X} -cover has a two part definition as follows:

Let $\mathcal C$ be a category (e.g. **Mod-R**, **Act-S**) and $\mathcal X$ any full subcategory of $\mathcal C$ (e.g. objects that are projecitve, flat, torsion free, etc).

An homomorphism $\phi: C \to A$ with $C \in \mathcal{X}$ is called an \mathcal{X} -precover of A if every homomorphism $\psi: X \to A$ with $X \in \mathcal{X}$ can be factored through C,

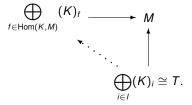
and we call it an \mathcal{X} -cover whenever $\psi = \phi$ forces ϵ to be an isomorphism. (Note, this is slightly weaker than the concept of a coreflective subcategory).

When $\mathcal{X}=\mathcal{P}$ the class of projective objects, this just becomes the usual definition of a projective cover. The dual definition with injective objects is the usual injective envelope.

Overview \mathcal{X} -cover **Module theory result** Act theory result Flat cove

Summary of Enochs' proof

- He first proved that it was sufficient to show every torsion free and injective module factored through a torsion free module.
- He then made use of the fact that a torsion free, injective module over an integeral domain is isomorphic to a direct sum of copies of the field of fractions K, hence $\bigoplus_{f \in \operatorname{Hom}(K,M)} (K)_f$ is a torsion free precover of M



 He finally proved that if M has a torsion free precover, then it has a torsion free cover. Overview \mathcal{X} -cover Module theory result Act theory result Flat cover

Existence of \mathcal{X} -covers

Theorem (B & R, 2011)

Let \mathcal{X} be a class of S-acts closed under direct limits. If A has an \mathcal{X} -precover, then A has an \mathcal{X} -cover.

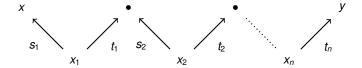
Torsion free acts are closed under direct limits, hence we need only show that every act has a torsion free precover.

Overview \mathcal{X} -cover Module theory result Act theory result Flat cover

Decomposition of acts

An *S*-act *A* is **decomposable** if it can be written as the coproduct of two subacts, $A = B \coprod C$, and **indecomposable** otherwise.

Given an indecomposable *S*-act *A*, for all $x, y \in A$, there exists $x_1, \ldots, x_n \in A$, $s_1, \ldots, s_n, t_1, \ldots, t_n \in S$ such that $x = x_1 s_1, x_1 t_1 = x_2 s_2, \ldots, x_n t_n = y$.



Theorem

Every S-act uniquely decomposes as a coproduct of indecomposable S-acts.

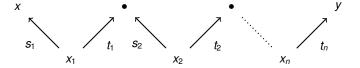
Overview \mathcal{X} -cover Module theory result Act theory result Flat cover

Existence of torsion free precovers

Lemma (B & R, 2011)

Over a (right) cancellative monoid, there is only a set of indecomposable torsion free (right) acts.

Proof: Let X be an indecomposable torsion free S-act, then for all $x, y \in X$, we have the following diagram:



Clearly the number of arrows 'coming out' of each vertex is bounded by |S|. Since S is right cancellative, xs = x's implies x = x' for all $x \in X$, $s \in S$. So the number of arrows 'coming in' to each vertex is also bounded by |S|. Therefore the cardinality of X is bounded by $\max\{\aleph_0, |S|\}$ and so there is only a set of such X.

Overview \mathcal{X} -cover Module theory result Act theory result Flat cove

Existence of torsion free precovers

Since there is only a set of torsion free indecomposable *S*-acts, $\{X_i : i \in I\}$, we have that $\coprod_{i \in I, f \in \text{Hom}(X_i, A)} (X_i)_f$ is a torsion free precover of A

$$\prod_{i \in I; f \in \text{Hom}(X_i, A)} (X_i)_f \longrightarrow A$$

$$\downarrow \qquad \qquad \downarrow$$

$$\vdots \qquad \qquad \downarrow$$

$$\prod_{j \in J} (X)_j \cong T.$$

So we have proved,

Theorem (B & R, 2011)

Over a (right) cancellative monoid, every (right) act has a torsion free cover.

Overview \mathcal{X} -cover Module theory result Act theory result Flat covers

Flat covers

A (right) S-act A is called

- flat if $A \otimes -$ preserves all monomorphisms
- ullet weakly flat if $A\otimes -$ preserves all embeddings of (left) ideals into S
- ullet principally weakly flat if $A\otimes -$ preserves embeddings of principal (left) ideals into S

It is well known that

flat \Rightarrow weakly flat \Rightarrow principally weakly flat \Rightarrow torsion free, and in general these are strict implications.

Theorem (Bulman-Fleming, McDowell 1990)

Over a right cancellative monoid S, an S-act is torsion free if and only if it is principally weakly flat.

Corollary (B & R, 2011)

Over a (right) cancellative monoid, every (right) act has a principally weakly flat cover.